Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.1 - The Tangent and Velocity Problems - 2.1 Exercises - Page 82: 5

Answer

a) (i) $v_{avg}=-32\thinspace \frac{ft}{s}$ (ii) $v_{avg}=-25.6\thinspace \frac{ft}{s}$ (iii) $v_{avg}=-24.8\thinspace \frac{ft}{s}$ (iv) $v_{avg}=-24.16\thinspace \frac{ft}{s}$ b) $-24\thinspace \frac{ft}{s}$

Work Step by Step

$t_1=2\thinspace s$ $v_{avg}=\frac{\Delta y}{\Delta t}=\frac{y_2-y_1}{t_2-t_1}=\frac{(40t_2-16t_2^2)-(40t_1-16t_1^2)}{t_2-t_1}$ a) (i) $t_1=2\thinspace s$ $t_2=2.5\thinspace s$ $v_{avg}=-32\thinspace \frac{ft}{s}$ (ii) $t_1=2\thinspace s$ $t_2=2.1\thinspace s$ $v_{avg}=-25.6\thinspace \frac{ft}{s}$ (iii) $t_1=2\thinspace s$ $t_2=2.05\thinspace s$ $v_{avg}=-24.8\thinspace \frac{ft}{s}$ (iv) $t_1=2\thinspace s$ $t_2=2.01\thinspace s$ $v_{avg}=-24.16\thinspace \frac{ft}{s}$ b) To find the instantaneous velocity at a specific time, we take the first derivative of the position equation. $y=40t-16t^{2}$ $y'=40-32t$ $y'(2)=40-32(2)$ $y'(2)=-24\thinspace \frac{ft}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.