Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.3 - The Integral Test and Estimates of Sums - 11.3 Exercises - Page 727: 46

Answer

The series converges when $c=1$.

Work Step by Step

$\Sigma_{n=1}^{\infty}\frac{c}{n}-\frac{1}{n+1}\lt \int_{1}^{\infty}\frac{c}{x}-\frac{1}{x+1}dx$ $=[clnx-ln(x+1)]_{1}^{\infty}$ $=ln2+\lim\limits_{x \to \infty} ln(\frac{x^{c}}{x+1})$ when $c\ne 1$ then $\lim\limits_{x \to \infty} ln(\frac{x^{c}}{x+1})= \pm \infty $ when $c =1$ then $\lim\limits_{x \to \infty} ln(\frac{x}{x+1})= 0 $ which is convergent. The series converges when $c=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.