Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 718: 83

Answer

$\Sigma^{\infty}_{n=1}Ca_{n}=C\Sigma^{\infty}_{n=1}a_{n}$

Work Step by Step

If $\Sigma a_{n}$ is convergent, then we have to prove that $\Sigma^{\infty}_{n=1}Ca_{n} = \Sigma^{\infty}_{n=1}a_{n}$, where $C$ is constant. Since the series is convergent, $\Sigma^{\infty}_{n=1}a_{n}$ exists and is finite. $\Sigma^{\infty}_{n=1}Ca_{n} = \lim\limits_{n \to \infty}\Sigma^{n}_{i=1}Ca_{i}$ $=\lim\limits_{n \to \infty}C\Sigma^{n}_{i=1}a_{i}$ $=C\lim\limits_{n \to \infty}\Sigma^{n}_{i=1}a_{i}$ $=C\Sigma^{\infty}_{n=1}a_{n}$ Since $\Sigma^{\infty}_{n=1}a_{n}$ exists and is finite, then $C\Sigma^{\infty}_{n=1}a_{n}$ will also exist and is finite. Therefore $\Sigma^{\infty}_{n=1}Ca_{n}=C\Sigma^{\infty}_{n=1}a_{n}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.