Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 717: 68

Answer

$a_{n} = 2.5$ if $n=1$ $a_{n} = \frac{n-2}{2^{n}}$ if $n \geq 2$ $\Sigma^{\infty}_{n=1} a_{n} = 3$

Work Step by Step

When $n=1$ $a_{1} = s_{1} = 3-1\times 2^{-1} =3 - 0.5 = 2.5$ When $n \geq 2$ $a_{n} = s_{n} - s_{n-1} = [3-n2^{-n}] - [3- (n-1)2^{-n+1}]$ $=(n-1)2^{-n+1} -n2^{-n}$ $=\frac{(n-1)}{2^{n-1}}-\frac{n}{2^{n}}$ $=\frac{2n-2}{2^{n}}-\frac{n}{2^{n}}$ $=\frac{n-2}{2^{n}}$ $\Sigma^{\infty}_{n=1} a_{n} = \lim\limits_{n \to \infty}s_{n}$ $=\lim\limits_{n \to \infty} 3-n2^{-n}$ $=3-\lim\limits_{n \to \infty} \frac{n}{2^{n}}$ Use L'Hospital's Rule $=3-\lim\limits_{n \to \infty}\frac{1}{2^{n}\ln2}$ $=3-\frac{1}{\infty}$ $=3-0=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.