Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 715: 8

Answer

The series appears to be converging to approximately $0.6321$

Work Step by Step

$\Sigma^{\infty}_{n=1} \frac{(-1)^{n-1}}{n!}$ $a_{n}=\frac{(-1)^{n-1}}{n!}$ partial sum $s_{n}=a_{1}+a_{2}+...+a_{n}$ $n=1$ $a_{1}=1.000$ $s_{1}=1.000$ $n=2$ $a_{2}=-0.500$ $s_{2}=0.500$ $n=3$ $a_{3}=0.16667$ $s_{3}=0.6667$ $n=4$ $a_{4}=-0.04167$ $s_{4}=0.6250$ $n=5$ $a_{5}=0.00833$ $s_{5}=0.6333$ $n=6$ $a_{6}=-0.00139$ $s_{6}=0.6319$ $n=7$ $a_{7}=0.00020$ $s_{7}=0.6321$ $n=8$ $a_{8}=-0.00002$ $s_{8}=0.6321$ The series appears to be converging to approximately $0.6321$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.