Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 706: 87

Answer

If $\lim\limits_{n\to\infty} |a_n|=0$, then $\lim\limits_{n\to\infty} a_n=0$

Work Step by Step

We need to prove that if $\lim\limits_{n\to\infty} |a_n|=0$, then $\lim\limits_{n\to\infty} a_n=0$ Consider the property of the absolute value as follows: $-|a_n| \leq a_n \leq |a_n|$ for all the values of $n$ Let us consider that $\lim\limits_{n\to\infty} |a_n|=0$ The limit laws of sequences state that $\lim\limits_{n\to\infty} |a_n|=0$; ( for all the values of $n$, we have $-|a_n| \leq a_n \leq |a_n|$ ) and $\lim\limits_{n\to\infty} -|a_n|=-\lim\limits_{n\to\infty} |a_n|=0$ The squeeze theorem for a sequence states that $\lim\limits_{n\to\infty} a_n=0$ Hence, it has been verified that when $\lim\limits_{n\to\infty} |a_n|=0$, then $\lim\limits_{n\to\infty} a_n=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.