Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.4 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 672: 6

Answer

$$\frac{9\pi -16}{8}$$

Work Step by Step

Given $$r=2+\cos \theta$$ From the given figure, the region bounded by $ \pi /2\leq \theta \leq \pi$ Area in polar form is given by \begin{align*} \text{Area}&=\dfrac{1}{2}\int_{\pi/2}^{\pi}r^2d\theta \\ &=\dfrac{1}{2}\int_{\pi/2}^{\pi}(2+\cos \theta )^2d\theta \\ &=\dfrac{1}{2}\int_{\pi/2}^{\pi}(4+4\cos \theta+\cos^2 \theta ) d\theta \\ &=\dfrac{1}{2}\int_{\pi/2}^{\pi}(4+4\cos \theta+\frac{1}{2}+\frac{1}{2}\cos2 \theta ) d\theta \\ &=\frac{9}{2}\theta+4\sin \theta +\frac{1}{4}\sin2 \theta \bigg|_{\pi/2}^{\pi}\\ &=\frac{9\pi -16}{8} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.