Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 1 - Section 1.4 - Exponential Functions - 1.4 Exercises - Page 55: 37

Answer

See work below.

Work Step by Step

Odd functions: $f(-x) = -f(x)$. $f(x)=\frac{1-e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$ $f(-x)=\frac{1-e^{\frac{1}{-x}}}{1+e^{\frac{1}{-x}}}$ $-f(x)=\frac{-1+e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$ Let's take $f(-x)$ $f(-x)=\frac{1-e^{\frac{1}{-x}}}{1+e^{\frac{1}{-x}}}$ $=\frac{1-\frac{1}{e^{\frac{1}{x}}}}{1+\frac{1}{e^{\frac{1}{x}}}}$ $=\left(\frac{1-\frac{1}{e^{\frac{1}{x}}}}{1+\frac{1}{e^{\frac{1}{x}}}}\right)\left(\frac{e^\frac{1}{x}}{e^{\frac{1}{x}}}\right)$ $=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$ $=-f(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.