Answer
$f(x)=3\cdot2^x$
Work Step by Step
At $(1,6), 6=Cb^1=Cb$ $(i)$
At $(3,24), 24=Cb^3$ $(ii)$
$\frac{(ii)}{(i)}: b^2=4, b=\pm 2$
$\because$ The graph is monotically increasing, $b\gt 0,$
$\therefore b=2\rightarrow(i)$
$2C=6, C=3$
$\therefore f(x)=3\cdot2^x$