Answer
$${x_1} = 0.620723,{\text{ }}{x_2} \approx 3.036454$$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \ln x - {x^2} + 3x - 1 \cr
& {\text{Let }}f\left( x \right) = 0 \cr
& \ln x - {x^2} + 3x - 1 = 0 \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\ln x - {x^2} + 3x - 1} \right] \cr
& f'\left( x \right) = \frac{1}{x} - 2x + 3 \cr
& {\text{Use the procedure Newton's Method for Approximations}} \cr
& {\text{Roots of }}f\left( x \right) = 0{\text{ }}\left( {{\text{See page 311}}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right){\text{ the Newton's method takes the}} \cr
& {\text{form}} \cr
& {x_{n + 1}} = {x_n} - \frac{{\ln \left( {{x_n}} \right) - x_n^2 + 3{x_n} - 1}}{{\frac{1}{{{x_n}}} - 2{x_n} + 3}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}x = 0.5 \cr
& {\text{Therefore}}{\text{,}} \cr
& n = 0,{\text{ }}{x_0} = 0.5 \cr
& {x_{n + 1}} = \left( {0.5} \right) - \frac{{\ln \left( {0.5} \right) - {{\left( {0.5} \right)}^2} + 3\left( {0.5} \right) - 1}}{{\frac{1}{{\left( {0.5} \right)}} - 2\left( {0.5} \right) + 3}} \approx 0.610787 \cr
& {\text{Computing the same calculation we obtain:}}{\text{.}} \cr
& {x_2} \approx 0.620655 \cr
& {x_3} \approx 0.620723 \cr
& {x_4} \approx 0.620723 \cr
& \cr
& {\text{From the graph we can see that the second possible initial }} \cr
& {\text{approximation is }}x = 3 \cr
& {\text{Therefore}}{\text{,}} \cr
& n = 0,{\text{ }}{x_0} = 3 \cr
& {x_{n + 1}} = \left( 3 \right) - \frac{{\ln \left( 3 \right) - {{\left( 3 \right)}^2} + 3\left( 3 \right) - 1}}{{\frac{1}{{\left( 3 \right)}} - 2\left( 3 \right) + 3}} \approx 3.036980 \cr
& {\text{Computing the same calculation we obtain:}}{\text{.}} \cr
& {x_2} \approx 3.036454 \cr
& {x_3} \approx 3.036454 \cr
& \cr
& {\text{The approximation of the roots are:}} \cr
& {x_1} = 0.620723,{\text{ }}{x_2} \approx 3.036454 \cr} $$