Answer
Both techniques yield
$$\lim_{x\to\infty}\frac{2x^3-x^2+1}{5x^3+2x}=\frac{2}{5}.$$
Work Step by Step
1) Standard method (identify the highest power of $x$ and pull it in front of the parentheses)
$$\lim_{x\to\infty}\frac{2x^3-x^2+1}{5x^3+2x}=\lim_{x\to\infty}\frac{x^3\left(\frac{2x^3}{x^3}-\frac{x^2}{x^3}+\frac{1}{x^3}\right)}{x^3\left(\frac{5x^3}{x^3}-\frac{2x}{x^3}\right)}=\lim_{x\to\infty}\frac{2-\frac{1}{x}+\frac{1}{x^3}}{5+\frac{2}{x^2}}=\left[\frac{2-0+0}{5+0}\right]=\frac{2}{5}.$$
2) L'Hopital's rule. "LR" will stand for "Apply L'Hopital's rule".
$$\lim_{x\to\infty}\frac{2x^3-x^2+1}{5x^3+2x}=\left[\frac{\infty}{\infty}\right][\text{LR}]=\lim_{x\to\infty}\frac{(2x^3-x^2+1)'}{(5x^3+2x)'}=\lim_{x\to\infty}\frac{6x^2-2x}{15x^2+2}=\left[\frac{\infty}{\infty}\right][\text{LR}]=\lim_{x\to\infty}\frac{(6x^2-2x)'}{(15x^2+2)'}=\lim_{x\to\infty}\frac{12x-2}{30x}=\left[\frac{\infty}{\infty}\right][\text{LR}]=\lim_{x\to\infty}\frac{(12x-2)'}{(30x)'}=\lim_{x\to\infty}\frac{12}{30}=\frac{2}{5}.$$