Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.4 Optimization Problems - 4.4 Exercises - Page 275: 11

Answer

\[x=5\sqrt{2}\text{ and }y=5\sqrt{2}\]

Work Step by Step

\[\begin{align} & \text{Let }x\text{ and }y\text{ the numbers, } \\ & \text{The product of the numbers is 50, then} \\ & xy=50\text{ }\left( \mathbf{1} \right) \\ & \text{In this case},\text{ the objective function is the sum }x\text{ and }y \\ & S=x+y\text{ }\left( \mathbf{2} \right) \\ & \text{The domain is }x\ge 0\text{ and }y\ge 0\text{ because are two positive }R \\ & \text{Solve the equation }\left( \mathbf{1} \right)\text{ for }y \\ & y=\frac{50}{x} \\ & \text{Substitute }\frac{50}{x}\text{ for }y\text{ into the equation }\left( \mathbf{2} \right) \\ & S=x+\frac{50}{x} \\ & \text{Differentiate }S\text{ with respect to }x \\ & \frac{dS}{dx}=1-\frac{50}{{{x}^{2}}} \\ & \text{Find the critical points by solving }\frac{dS}{dx}=0 \\ & 1-\frac{50}{{{x}^{2}}}=0 \\ & {{x}^{2}}=50 \\ & x=\pm \sqrt{50} \\ & x=\pm 5\sqrt{2} \\ & x\text{ is positive, then} \\ & x=5\sqrt{2} \\ & \text{Calculating the second derivative of the function} \\ & \frac{{{d}^{2}}S}{d{{x}^{2}}}=\frac{d}{dx}\left[ 1-\frac{50}{{{x}^{2}}} \right] \\ & \frac{{{d}^{2}}S}{d{{x}^{2}}}=0-50\left( -2{{x}^{-3}} \right) \\ & \frac{{{d}^{2}}S}{d{{x}^{2}}}=\frac{100}{{{x}^{3}}} \\ & \text{At }x=5\sqrt{2}\Rightarrow \frac{{{d}^{2}}S}{d{{x}^{2}}}\text{is positive, then there is a local minumum} \\ & \text{Now we can calculate }y \\ & y=\frac{50}{x} \\ & y=\frac{50}{5\sqrt{2}} \\ & y=5\sqrt{2} \\ & \text{Therefore, the numbers are }x=5\sqrt{2}\text{ and }y=5\sqrt{2} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.