Answer
$${\text{Width}} = {\text{length}} = \frac{1}{4}P$$
Work Step by Step
$$\eqalign{
& {\text{From the image shown below we have that the perimeter is}} \cr
& {\text{given by the equation}} \cr
& 2x + 2y = P{\text{ }}\left( {\bf{1}} \right) \cr
& {\text{In this case}},{\text{ the objective function is the area }}A = xy \cr
& A = xy{\text{ }}\left( {\bf{2}} \right) \cr
& {\text{Solve the equation }}\left( {\bf{1}} \right){\text{ for }}y \cr
& 2y = P - 2x \cr
& {\text{ }}y = \frac{1}{2}P - x \cr
& {\text{Substitute }}\frac{1}{2}P - x{\text{ into the equation }}\left( {\bf{2}} \right) \cr
& A = x\left( {\frac{1}{2}P - x} \right) \cr
& {\text{Which is a function of the single variable }}x.{\text{ Notice that the }} \cr
& {\text{values of }}x{\text{ lie in the interval }}0 \leqslant x \leqslant \frac{1}{2}P{\text{ with }}A\left( 0 \right) = A\left( {\frac{1}{2}P} \right) = 0 \cr
& {\text{Differentiate }}A{\text{ with respect to }}x \cr
& A = \frac{1}{2}Px - {x^2} \cr
& \frac{{dA}}{{dx}} = \frac{1}{2}P - 2x \cr
& {\text{Find the critical points by solving }}\frac{{dA}}{{dx}} = 0 \cr
& \frac{1}{2}P - 2x = 0 \cr
& x = \frac{1}{4}P \cr
& {\text{To find the absolute maximum value of }}A{\text{ on the interval }}\left[ {0,\frac{1}{2}P} \right]{\text{ }} \cr
& {\text{we check the endpoints and the critical points}}.{\text{ Because }} \cr
& A\left( 0 \right) = A\left( {\frac{1}{2}P} \right) = 0{\text{ and }}A\left( {\frac{1}{4}P} \right) = \frac{1}{{16}}{P^2} > 0,{\text{ }} \cr
& {\text{we conclude that }}A{\text{ has its absolute maximum value at }}x = \frac{1}{4}P \cr
& {\text{Now we can calculate }}y \cr
& {\text{ }}y = \frac{1}{2}P - x \cr
& {\text{ }}y = \frac{1}{2}P - \frac{1}{4}P \cr
& {\text{ }}y = \frac{1}{4}P \cr
& {\text{Therefore, the dimensions are Width}} = {\text{length}} = \frac{1}{4}P \cr} $$