Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 232: 4

Answer

$$\eqalign{ & \left( a \right).{\text{ }}m = - 5 \cr & \left( b \right).{\text{ }}y = - 5x + 3 \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{x + 3}}{{2x + 1}};{\text{ }}P\left( {0,3} \right) \cr & \left( a \right){\text{ Calculate }}f'\left( x \right){\text{ using the definition of the derivative}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{x + h + 3}}{{2\left( {x + h} \right) + 1}} - \frac{{x + 3}}{{2x + 1}}}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{2{x^2} + 2xh + h + 6x - 2x\left( {x + h} \right) - 6\left( {x + h} \right)}}{{\left[ {2\left( {x + h} \right) + 1} \right]\left( {2x + 1} \right)}}}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{ - 5h}}{{\left[ {2\left( {x + h} \right) + 1} \right]\left( {2x + 1} \right)}}}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{ - 5}}{{\left[ {2\left( {x + h} \right) + 1} \right]\left( {2x + 1} \right)}} \cr & f'\left( x \right) = - \frac{5}{{{{\left( {2x + 1} \right)}^2}}} \cr & {\text{Calculate the slope at }}P\left( {0,3} \right) \cr & m = f'\left( 0 \right) = - \frac{5}{{{{\left( {2\left( 0 \right) + 1} \right)}^2}}} = - 5 \cr & \cr & \left( b \right){\text{ Find an equation of the tangent line at }}P\left( {0,3} \right) \cr & y - 3 = - 5\left( {x - 0} \right) \cr & y - 3 = - 5x \cr & {\text{ }}y = - 5x + 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.