Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 201: 53

Answer

$$\eqalign{ & \left( {\bf{a}} \right) \cr & y = x - 1 \cr & y = - x + 2 \cr & \left( {\bf{b}} \right){\text{ See the graph}} \cr} $$

Work Step by Step

$$\eqalign{ & x + {y^2} - y = 1;\,\,\,x = 1 \cr & {\text{Calculate }}y{\text{ for }}x = 1 \cr & 1 + {y^2} - y = 1 \cr & {\text{ }}{y^2} - y = 0 \cr & y\left( {y - 1} \right) = 0 \cr & y = 0,{\text{ }}y = 1 \cr & {\text{We obtain the points}} \cr & \left( {1,0} \right),{\text{ }}\left( {1,1} \right) \cr & {\text{Differentiate implicitly with respect to }}x \cr & 1 + 2y\frac{{dy}}{{dx}} - \frac{{dy}}{{dx}} = 0 \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & 2y\frac{{dy}}{{dx}} - \frac{{dy}}{{dx}} = - 1 \cr & \frac{{dy}}{{dx}}\left( {2y - 1} \right) = - 1 \cr & \frac{{dy}}{{dx}} = \frac{1}{{1 - 2y}} \cr & {\text{Calculate the slope }}m{\text{ for the points }}\left( {1,0} \right),{\text{ }}\left( {1,1} \right) \cr & \left( {1,0} \right) \Rightarrow m = \frac{1}{{1 - 2\left( 0 \right)}} = 1 \cr & \left( {1,1} \right) \Rightarrow m = \frac{1}{{1 - 2\left( 1 \right)}} = - 1 \cr & {\text{Find the equations of the tangent lines at the points }} \cr & \left( {1,0} \right),{\text{ }}\left( {1,1} \right),{\text{ then}} \cr & {\bf{For }}\left( {{\bf{1,0}}} \right) \cr & y - 0 = 1\left( {x - 1} \right) \cr & y = x - 1 \cr & {\bf{For }}\left( {{\bf{1,1}}} \right) \cr & y - 1 = - 1\left( {x - 1} \right) \cr & {\text{ }}y = - x + 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.