Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.1 Modeling with Differential Equations - 9.1 Exercises - Page 630: 5

Answer

Hence, the only function which is a solution of the given differential equation is \[ y=-\dfrac{1}{2}x\cos x \]

Work Step by Step

We have the second order differential equation \[ y^{\prime\prime}+y=\sin x....(1) \] We need to find which function in (a), (b), (c), or (d) is a solution for the given differential equation. For (a), we have \[ y=\sin x \] We find the second derivative, yields \begin{eqnarray*} y^\prime=\dfrac{d}{dx}\Big[\sin x\Big]&=&\cos x\\ y^{\prime\prime}=\dfrac{d}{dx}\Big[\cos x\Big]&=&-\sin x \end{eqnarray*} We substitute into (1), yields \begin{eqnarray*} y^{\prime\prime}+y&=&-\sin x +\sin x\\ &=&0 \\ &\neq& \sin x \end{eqnarray*} Thus, the given function in (a) is not a solution for the given differential equation. We apply the same method for the functions in part (b), (c), and (d). For (b), we have \[ y=\cos x\quad \Rightarrow \quad y^{\prime}=-\sin x\quad \Rightarrow \quad y^{\prime\prime}=-\cos x \] Hence, we have \begin{eqnarray*} y^{\prime\prime}+y&=&-\cos x +\cos x\\ &=&0 \\ &\neq& \sin x\quad \text{Not a solution} \end{eqnarray*} For (c), we have \begin{eqnarray*} y=\dfrac{1}{2}x\sin x\quad \Rightarrow \quad y^{\prime}&=&\dfrac{1}{2}\sin x+\dfrac{1}{2}x\cos x\\ y^{\prime\prime}&=&\dfrac{1}{2}\cos x+\dfrac{1}{2}\cos x-\dfrac{1}{2}x\sin x\\ &=&\cos x-\dfrac{1}{2}x\sin x \end{eqnarray*} yields \begin{eqnarray*} y^{\prime\prime}+y&=&\cos x-{\dfrac{1}{2}x\sin x}+{\dfrac{1}{2}x\sin x}\\ &=&\cos x \\ &\neq &\sin x\quad \text{Not a solution} \end{eqnarray*} For (d), we have \begin{eqnarray*} y=\dfrac{-1}{2}x\cos x\quad \Rightarrow \quad y^{\prime}&=&\dfrac{-1}{2}\cos x+\dfrac{1}{2}x\sin x\\ y^{\prime\prime}&=&\dfrac{1}{2}\sin x+\dfrac{1}{2}\sin x+\dfrac{1}{2}x\cos x\\ &=&\sin x+\dfrac{1}{2}x\cos x \end{eqnarray*} yields \begin{eqnarray*} y^{\prime\prime}+y&=&\sin x+\dfrac{1}{2}x\cos x-\dfrac{1}{2}x\cos x\\ &=&\sin x\quad \text{Is a solution} \end{eqnarray*} Hence, the only function which is a solution of the given differential equation is \[ y=-\dfrac{1}{2}x\cos x \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.