Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 576: 68

Answer

M = $\dfrac{-1}{k}$ with $k$ is radioactivity constant

Work Step by Step

We have: M = $-k\displaystyle\int\limits_{0}^{\infty} t.e^{kt}dt = -\dfrac{1}{k} \displaystyle\int\limits_{0}^{\infty} kt.e^{kt}d(kt) $. After that, we call $ x = kt $. Because $t$ (time) $\gt0$ and $k \lt0$, $x$ must negative. When $t=\infty, x=-\infty$, when $t=0, x=0$. Using the Definition of Improper Integral of Type 1, $M= -\dfrac{1}{k} \displaystyle\int\limits_{0}^{-\infty} x.e^{x}dx = -\dfrac{1}{k}. \displaystyle \lim_{a \to -\infty}\int\limits_{0}^{a} x.e^{x}dx = -\dfrac{1}{k}.\displaystyle\lim_{a \to -\infty}\left( x.e^{x} |_{0}^{a} -\int\limits_{0}^{a} e^{x}dx\right)$ $ = -\dfrac{1}{k}.\displaystyle\lim_{a \to -\infty}\left[a.e^{a} -(e^{a}-1)\right] = -\dfrac{1}{k}.\displaystyle\lim_{a \to -\infty}\left[(a-1)e^{a}+1\right]. $ We know $\displaystyle\lim_{a \to -\infty}(a-1)e^{a}=0$ because $\lim\limits_{a \to -\infty}e^{a}=e^{-\infty}=\dfrac{1}{e^{\infty}}=0$. Therefore M$= -\dfrac{1}{k}.(0+1)=-\dfrac{1}{k} \approx 8264.46 $. The radiation time of $^{14}$C radioisotope is year so M$ =8264.46$ years.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.