Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 17 - Second-Order Differential Equations - 17.2 Nonhomogeneous Linear Equations - 17.2 Exercises - Page 1208: 27

Answer

$y=e^x [c_1+c_2 x-\dfrac{1}{2} \ln (1+x^2) +x \tan^{-1} x]$

Work Step by Step

The auxiliary solution .$r^2-2r+1=0 \implies r=1$ Thus, we have $y_c=c_1 e^x+c_2 xe^{x}$ The particular solution is: $y_p=u_1 e^x+u_2 xe^{x}; y'_p=u'_1 e^x+u_1 e^{x}+u'_2 xe^x+u_2 e^{x}(1+x)$ This gives: $u'_1=--u'_2 x$ and $y''-3y'+2y=\dfrac{1}{1+e^{-x}}$ $u'_1+u'_2(1+x)=\dfrac{1}{1+x^2}$ $u'_2=\dfrac{1}{1+x^2}$ or, $u_2=\arctan x$ and $u'_1=-[\dfrac{x}{1+x^2}]$ or, $u_1=-\dfrac{1}{2} \ln (1+x^2)$ Hence, $y=y_c+y_p=e^x [c_1+c_2 x-\dfrac{1}{2} \ln (1+x^2) +x \tan^{-1} x]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.