Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.7 Triple-Integrals in Cylindrical Coordinates - 15.7 Exercises - Page 1084: 22

Answer

$\dfrac{32\pi}{3}-4\pi\sqrt 3$

Work Step by Step

Consider $V=\int_0^{2\pi} \int_{0}^{1}\int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r dz dr d\theta$ $=\int_0^{2\pi} \int_{0}^{1}[rz]_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}}\times r dz dr d\theta$ $=\int_0^{2\pi} \int_{0}^{1}2r(\sqrt{4-r^2}) \times dr d\theta$ Suppose $a=4-r^2$ and $da=-2rdr$ $=\int_0^{2\pi} \int_{3}^{4} a^{(1/2)} da d\theta$ $=\int_0^{2\pi} [(2/3) a^{3/2}]_{3}^{4} \times a^{1/2} d\theta$ $= [\dfrac{16}{3} \theta-2 \times \theta \sqrt 3]_0^{2\pi}$ $=\dfrac{32}{3}\pi-4\sqrt 3 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.