Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1079: 43

Answer

$I_x=I_y=I_z= \dfrac{2kL^5}{3}$

Work Step by Step

Let us consider that $I_x=\iiint_{E} (y^2+z^2) \rho(x,y,z) dV=k\int_{0}^L\int_{0}^{L}\int_0^L (y^2+z^2) dx dy dz $ and $k\int_{0}^{L} (y^2x+z^2x)_0^L dy dz=k\int_{0}^{L} [y^2(L-0)+z^2(L-0)] dy dz=(kL) \int_{0}^{L} (y^2+z^2) dy dz $ or, $(kL) \int_{0}^{L} (L^3+z^2L) dz = (kL)[\dfrac{zL^3}{3}+\dfrac{z^3L}{3}]_0^L$ and $\iiint_{E} (y^2+z^2) \rho(x,y,z) dV= \dfrac{2kL^5}{3}$ By symmetry, we have $I_x=I_y=I_z= \dfrac{2kL^5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.