Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - Review - Exercises - Page 1024: 51

Answer

Minimum value: $f(-4,1)=-11$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is a not a local minimum and local maximum or, a saddle point. For $(x,y)=(-4,1)$ $D=5 \gt 0$ ; and $f_{xx} =2\gt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. Now, $f(-4,1)=(-4)^2-(-4)(1)+(1)^2+(9)(-4)-6(1)+10=-11$ Therefore, we have Minimum value: $f(-4,1)=-11$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.