Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.2 Fluid Pressure and Force - Exercises - Page 476: 24

Answer

$$45 d h \sqrt{\left(\frac{b-a}{2}\right)^{2}+h^{2}}$$

Work Step by Step

Since $$ \sin (\theta)=\frac{\text { Side Opposite }}{\text { Hypotenuse }}=\frac{h}{\sqrt{\left(\frac{b-a}{2}\right)^{2}+h^{2}}} $$ Therefore, \begin{aligned} F=w \int_{0}^{h} \frac{d \cdot y}{\sin (\theta)} d y &=\frac{90 d}{\sin (\theta)} \int_{0}^{h} y d y \\ &=\frac{90 d}{\sin (\theta)}\left[\frac{y^{2}}{2}\right]_{0}^{h} \\ &=\frac{45 d h^{2}}{\sin (\theta)} \\ &=45 d h \sqrt{\left(\frac{b-a}{2}\right)^{2}+h^{2}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.