Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.2 Fluid Pressure and Force - Exercises - Page 475: 20

Answer

$$ F=\frac{200 \sqrt{3}}{3}(62.4) \approx 7205.33 \mathrm{lb} $$ $$ F=\frac{200 \sqrt{3}}{3}(9800) \approx 1131606.53 $$

Work Step by Step

Since $$ \frac{\Delta y}{\sin 60^{\circ}}=\frac{2\sqrt{3}}{3}\Delta y $$ Then \begin{aligned} F=\rho g \int_{0}^{10} y f(y) d y &=\rho g \int_{0}^{10} \frac{3}{10} y \cdot \frac{2 \sqrt{3}}{3} y d y \\ &=\frac{\sqrt{3}}{5} \rho g \int_{0}^{10} y^{2} d y \\ &=\frac{\sqrt{3}}{5} \rho g\left[\frac{y^{3}}{3}\right]_{0}^{10} \\ &=\frac{\sqrt{3}}{5} \rho g\left[\frac{1000}{3}\right] \\ &=\frac{200 \sqrt{3}}{3} \rho g \end{aligned} Now if distances are in feet, then, $\rho g=w=62.4,$ and so, $$ F=\frac{200 \sqrt{3}}{3}(62.4) \approx 7205.33 \mathrm{lb} $$ If distances are in meters, then, $\rho g=9800,$ and so, $$ F=\frac{200 \sqrt{3}}{3}(9800) \approx 1131606.53 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.