Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 459: 3

Answer

$$\frac{1}{9} \sin ^{9} \theta-\frac{1}{11} \sin ^{11} \theta+C$$

Work Step by Step

\begin{aligned} \int \cos ^{3} \theta \sin ^{8} \theta d \theta &=\int \cos \theta \cos ^{2} \theta \sin ^{8} \theta d \theta \\ &=\int \cos \theta\left(1-\sin ^{2} \theta\right) \sin ^{8} \theta d \theta \\ &=\int\left(\cos \theta-\cos \theta \sin ^{2} \theta\right) \sin ^{8} \theta d \theta \\ &=\int\left(\cos \theta \sin ^{8} \theta-\cos \theta \sin ^{10} \theta\right) d \theta \\ &=\int \cos \theta \sin ^{8} \theta d \theta-\int \cos \theta \sin ^{10} \theta d \theta\\ &=\frac{1}{9} \sin ^{9} \theta-\frac{1}{11} \sin ^{11} \theta+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.