Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 442: 88

Answer

$\dfrac{C}{s}$

Work Step by Step

The Laplace Transform of $f(x)$ can be found as: $L f(s)=\int_0^{\infty} C e^{-sx}\ dx\\=\lim\limits_{R \to \infty}[\dfrac{-C}{s}e^{-sx}]_0^R\\=\lim\limits_{R \to \infty}\dfrac{-C}{s}(e^{-sR}-1)\\=\dfrac{-C}{s} (0-1)\\=\dfrac{C}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.