Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.9 Hyperbolic Functions - Exercises - Page 385: 63

Answer

$$\tanh ^{-1} t=\frac{1}{2} \ln \left(\frac{1+t}{1-t}\right) \text { for }|t|<1$$

Work Step by Step

Let $$ x=\tanh ^{1} t$$ Then \begin{aligned} t&=\tanh x \\ &=\frac{e^{x}-e^{-1}}{e^{x}+e^{-1}}\\ &=\frac{e^{x}-e^{-1}}{e^{x}+e^{-1}} \cdot \frac{e^{x}}{e^{x}}\\ &=\frac{e^{2 x}-1}{e^{2 x}+1}\\ t\left(e^{2 x}+1\right)&=e^{2 x}-1\\ (x-1) e^{2 x}+(x+1)&=0\\ e^{2 x}&= \frac{(t+1)}{(1-t)}\\ 2x&=\ln \frac{(t+1)}{(1-t)}\\ x&= \frac{1}{2} \ln \frac{(t+1)}{(1-t)}\\ \end{aligned} Hence $$\tanh ^{-1} t=\frac{1}{2} \ln \left(\frac{1+t}{1-t}\right) \text { for }|t|<1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.