Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.5 Compound Interest and Present Value - Exercises - Page 356: 21

Answer

$$\$71460.53 $$

Work Step by Step

Since $$ R(t)=(5000+1000 t) e^{0.02 t}, \ \ \ T=10,\ \ r=0.08$$ Then \begin{aligned} P V &=\int_{0}^{T} R(t) e^{-r t} d t \\ &=\int_{0}^{10}(5000+1000 t) e^{-0.06 t} d t \\ &=5000 \int_{0}^{10} e^{-0.06 t} d t+1000 \int_{0}^{10} t e^{-0.06 t} d t\ \ \text{integrate by parts }\\ &= \left.\frac{5000}{-0.06} e^{-0.06 t}\right|_{0} ^{10}+ \left.1000\left(-\frac{e^{-0.06 t}(1+0.06 t)}{0.06^{2}}\right)\right|_{0} ^{10}\\ &= 37599.03+33861.5\\ &=\$71460.53 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.