Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.2 Inverse Functions - Exercises - Page 335: 40

Answer

g'(x)=\frac{-1}{x^{2}}

Work Step by Step

Prove inverse by showing f(g(x))=g(f(x))=x f(g(x))=\frac{1}{1+\frac{1-x}{x}}=1\frac{1}{x}=x g(f(x))=\frac{1-(\frac{1}{1+x})}{\frac{1}{1+x}}=\frac{x}{1+x}\times\frac{x+1}{1}=x Compute g'(x) directly: g'(x)=\frac{(1-x)'x-(1-x)x'}{x^{2}}=\frac{-x-1+x}{x^{2}}=\frac{-1}{x^{2}} f'(x)=(x+1)^{-1}=-(x+1)^{-2} f'(g(x))=-((\frac{1-x}{x})+1)^{-2}=-(\frac{1-x+x}{x})^{-2}=-(\frac{1}{x})^{-2}=-x^{2} Therefore \frac{1}{f'(g(x))}=\frac{-1}{x^{2}}=g'(x)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.