Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.3 The Mean Value Theorem and Monotonicity - Exercises - Page 190: 63

Answer

$f(x)$ is increasing on $(−∞, ∞)$ if $ b \gt a^2/3$

Work Step by Step

Given $$f(x)=x^{3}+a x^{2}+b x+c$$ Since \begin{align*} f'(x)& = 3x^2+2ax +b \\ &= 3\left[x^2+\frac{2a}{3}x\right]+b\\ &= 3\left( x+\frac{a}{3}\right)^2+\left(b- \frac{a^2}{3}\right) \end{align*} Then $f'(x)\gt0$ when $b\gt \dfrac{a^2}{3}$. Hence, $f(x)$ is increasing on $(−∞, ∞)$ if $ b \gt a^2/3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.