Answer
See the attachment.
Work Step by Step
Given: $f(u)=u^{3}$, $g(x)=3x+5$
We find the composite function as follows:
$f(g(x))=(3x+5)^{3}$
Now, take the derivatives:
$f'(u)= 3u^{3-1}=3u^{2}$
$f'(g(x))=3(3x+5)^{2}$
$g'(x)=3$
$(f\circ g)'=f'(g(x))\times g'(x)$
$=3(3x+5)^{2}\times3=9(3x+5)^{2}$
See the filled table below.