Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.4 Rates of Change - Exercises - Page 130: 32

Answer

(a) Average rate of change of $I$ with respect to $R$ for the interval from $R=8$ to $R=8.1$ is $\dfrac{-1}{5.4}$ amperes/ohm. (b) The rate of change of $I$ with respect to $R$ when $R = 8$ ohms is $\dfrac{-3}{16}$ amperes/ohm. (c) The rate of change of $R$ with respect to $I$ when $I = 1.5$ amperes is $\dfrac{-16}{3}$ ohms/ampere.

Work Step by Step

(a) Firstly, calculate value of $I$ for $R=8$ ohms using $V=IR$. Substitute $R=8$ ohms and $V=12$ volts in $V=IR$. We get $12=I\times 8$. This gives $I=\frac{12}{8}$ amperes. Now, calculate value of $I$ for $R=8.1$ ohms using $V=IR$. Substitute $R=8.1$ ohms and $V=12$ volts in $V=IR$. We get $12=I\times 8.1$. This gives $I=\frac{12}{8.1}$ amperes. Now, calculate the average rate of change of $I$ with respect to $R$ as follows: $\dfrac{\Delta I}{\Delta R}=\dfrac{\frac{12}{8.1}-\frac{12}{8}}{8.1-8}=\dfrac{\frac{96-97.2}{8.1\times8}}{0.1}=\dfrac{\frac{-1.2}{64.8}}{0.1}=\dfrac{-12}{64.8}=\dfrac{-1}{5.4}$ amperes/ohm. (b) Firstly, solve $V=IR$ for $I$. We get $I=\dfrac{V}{R}=VR^{-1}$. Now, calculate the rate of change of $I$ with respect to $R$ at $R=8$ ohms. $\dfrac{dI}{dR}=\dfrac{d}{dR}(VR^{-1})=-VR^{-2}$. Now substitute $V=12$ volts and $R=8$ ohms and then simplify. $\dfrac{dI}{dR}=-12\times 8^{-2}=\frac{-12}{8^{2}}=\frac{-12}{64}=\frac{-3}{16}$ amperes/ohm. (c) Firstly, solve $V=IR$ for $R$. We get $R=\dfrac{V}{I}=VI^{-1}$. Now, calculate the rate of change of $R$ with respect to $I$ at $I=1.5$ amperes. $\dfrac{dR}{dI}=\dfrac{d}{dI}(VI^{-1})=-VI^{-2}$. Now substitute $V=12$ volts and $I=1.5$ amperes and then simplify. $\dfrac{dR}{dI}=-12\times 1.5^{-2}=\frac{-12}{1.5^{2}}=\frac{-12}{2.25}=\frac{-1200}{225}=\frac{-16}{3}$ ohms/ampere.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.