Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.5 Evaluating Limits Algebraically - Preliminary Questions - Page 72: 1

Answer

$$ \frac{x^{2}-1}{\sqrt{x+3}-2} $$

Work Step by Step

A rational function $f$ is indeterminate at $x=1$ if the formula for $f(1)$ yields un undefined expression of the type $\dfrac{\infty}{\infty}$ or $\dfrac{0}{0}$. We check $f(1)$ for each of the given functions. $1)$ $f(x)=\dfrac{x^2+1}{x-1}$ $f(1)=\dfrac{1^2+1}{1-1}=\dfrac{2}{0}$ (not indeterminate) $2)$ $f(x)=\dfrac{x^2-1}{x+2}$ $f(1)=\dfrac{1^2-1}{1+2}=\dfrac{0}{3}$ (not indeterminate) $3)$ $f(x)=\dfrac{x^2-1}{\sqrt{x+3}-2}$ $f(1)=\dfrac{1^2-1}{\sqrt{1+3}-2}=\dfrac{0}{0}$ (indeterminate) $4)$ $f(x)=\dfrac{x^2+1}{\sqrt{x+3}-2}$ $f(1)=\dfrac{1^2+1}{\sqrt{1+3}-2}=\dfrac{2}{0}$ (not indeterminate) So the function is $\dfrac{x^2-1}{\sqrt{x+3}-2}$ is the indeterminate one.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.