Answer
$9 \pi$
Work Step by Step
The area of a given region can be computed as: $A=\dfrac{1}{2}\int_C xdy-y dx$
Here, we have $x=3 \cos \theta; y=3 \sin \theta$
Therefore,
$A=\dfrac{1}{2}\int_C (3 \cos \theta)(3 \cos \theta) d \theta -(3 \sin \theta) (-3 \sin \theta) d \theta\\=\dfrac{1}{2}\int_0^{2 \pi} 9 d \theta\\=\dfrac{1}{2} (9) (2 \pi) \\=9 \pi$