Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Preliminary Questions - Page 931: 2

Answer

(a) zero line integral (b) nonzero (c) zero line integral (d) zero line integral (e) zero line integral (f) nonzero

Work Step by Step

The vertical segment $C$ from $\left( {0,0} \right)$ to $\left( {0,1} \right)$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {0,t} \right)$, ${\ \ \ }$ for $0 \le t \le 1$ So, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {0,1} \right)\cdot\left( {0,1} \right)} = 1$. (a) We have $f\left( {x,y} \right) = x$. Since $x=0$ from $\left( {0,0} \right)$ to $\left( {0,1} \right)$, so $f\left( {x,y} \right) = 0$. Therefore, $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = 0$ So, $f\left( {x,y} \right) = x$ has a zero line integral over the vertical segment from $\left( {0,0} \right)$ to $\left( {0,1} \right)$. (b) We have $f\left( {x,y} \right) = y$. By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $ = \mathop \smallint \limits_0^1 t{\rm{d}}t = \frac{1}{2}{t^2}|_0^1 = \frac{1}{2}$ So, $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \frac{1}{2} \ne 0$. (c) We have ${\bf{F}} = \left( {x,0} \right)$. By Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ Since ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {0,0} \right)$, so $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$. So, ${\bf{F}} = \left( {x,0} \right)$ has a zero line integral over the vertical segment from $\left( {0,0} \right)$ to $\left( {0,1} \right)$. (d) We have ${\bf{F}} = \left( {y,0} \right)$. By Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \left( {t,0} \right)\cdot\left( {0,1} \right){\rm{d}}t = 0$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$. So, ${\bf{F}} = \left( {y,0} \right)$ has a zero line integral over the vertical segment from $\left( {0,0} \right)$ to $\left( {0,1} \right)$. (e) We have ${\bf{F}} = \left( {0,x} \right)$. By Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ Since ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {0,0} \right)$, so $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$. So, ${\bf{F}} = \left( {0,x} \right)$ has a zero line integral over the vertical segment from $\left( {0,0} \right)$ to $\left( {0,1} \right)$. (f) We have ${\bf{F}} = \left( {0,y} \right)$. By Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \left( {0,t} \right)\cdot\left( {0,1} \right){\rm{d}}t = \mathop \smallint \limits_0^1 t{\rm{d}}t$ $ = \frac{1}{2}{t^2}|_0^1 = \frac{1}{2}$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{2} \ne 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.