Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 894: 63

Answer

We prove: ${I_h} = {I_z} + M{h^2}$

Work Step by Step

Write ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {x^2} - 2ax + {a^2} + {y^2} - 2by + {b^2}$ $ = {x^2} + {y^2} - 2ax - 2by + {a^2} + {b^2}$ Substituting in ${I_h}$ ${I_h} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \left( {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \right)\delta \left( {x,y,z} \right){\rm{d}}V$ gives ${I_h} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \left( {{x^2} + {y^2} - 2ax - 2by + {a^2} + {b^2}} \right)\delta \left( {x,y,z} \right){\rm{d}}V$ (1) ${\ \ \ \ }$ ${I_h} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \left( {{x^2} + {y^2}} \right)\delta \left( {x,y,z} \right){\rm{d}}V$ $ - 2a\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} x\delta \left( {x,y,z} \right){\rm{d}}V - 2b\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} y\delta \left( {x,y,z} \right){\rm{d}}V$ $ + \left( {{a^2} + {b^2}} \right)\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \delta \left( {x,y,z} \right){\rm{d}}V$ Using the following facts: 1. By definition: ${I_z} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \left( {{x^2} + {y^2}} \right)\delta \left( {x,y,z} \right){\rm{d}}V$ 2. Since the center of mass is at the origin, so $\left( {{x_{CM}},{y_{CM}},{z_{CM}}} \right) = \left( {0,0,0} \right)$. Thus, ${x_{CM}} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} x\delta \left( {x,y,z} \right){\rm{d}}V = 0$ ${y_{CM}} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} y\delta \left( {x,y,z} \right){\rm{d}}V = 0$ These implies that $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} x\delta \left( {x,y,z} \right){\rm{d}}V = 0$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} y\delta \left( {x,y,z} \right){\rm{d}}V = 0$ 3. $h = \sqrt {{a^2} + {b^2}} $, so ${h^2} = {a^2} + {b^2}$. 4. $M = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \delta \left( {x,y,z} \right){\rm{d}}V$ thus, equation (1) becomes ${I_h} = {I_z} + M{h^2}$. This proves the Parallel-Axis Theorem.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.