Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 893: 54

Answer

$P\left( {XY \ge \frac{1}{2}} \right) \simeq 0.153$

Work Step by Step

We have the joint probability density function: $p\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}} 1&{{\rm{if}}{\ }0 \le x \le 1,0 \le y \le 1}\\ 0&{{\rm{otherwise}}} \end{array}} \right.$ Notice that the domain ${\cal D}$ of the $p\left( {x,y} \right)$ for nonzero $p$ is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le 1} \right\}$ To calculate the probability that $XY \ge \frac{1}{2}$, we must define the domain ${{\cal D}_1}$ such that $xy \ge \frac{1}{2}$ and satisfies the domain of $p\left( {x,y} \right)$ where $p$ is nonzero, that is, $0 \le x \le 1$, $0 \le y \le 1$. We sketch the domain and see that we can describe ${{\cal D}_1}$ as a vertically simple region, bounded below by the curve $xy = \frac{1}{2}$ and bounded above by the line $y=1$. We find the left boundary by intersecting the curve $xy = \frac{1}{2}$ and the line $y=1$: $x\cdot 1 = \frac{1}{2}$, ${\ \ \ \ }$ $x = \frac{1}{2}$ So, the range of $x$ is $\frac{1}{2} \le x \le 1$. Thus, the description of ${{\cal D}_1}$: ${{\cal D}_1} = \left\{ {\left( {x,y} \right)|\frac{1}{2} \le x \le 1,\frac{1}{{2x}} \le y \le 1} \right\}$ Evaluate: $P\left( {XY \ge \frac{1}{2}} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} p\left( {x,y} \right){\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 1/2}^1 \mathop \smallint \limits_{y = 1/\left( {2x} \right)}^1 {\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 1/2}^1 \left( {y|_{1/\left( {2x} \right)}^1} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 1/2}^1 \left( {1 - \frac{1}{{2x}}} \right){\rm{d}}x$ $ = \left( {x - \frac{1}{2}\ln x} \right)|_{1/2}^1$ $ = 1 - \frac{1}{2} + \frac{1}{2}\ln \frac{1}{2} = \frac{1}{2} - \frac{1}{2}\ln 2 \simeq 0.153$ So, $P\left( {XY \ge \frac{1}{2}} \right) \simeq 0.153$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.