Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Preliminary Questions - Page 879: 3

Answer

(a) the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le \phi \le \pi $, ${\ \ \ }$ $0 \le \rho \le 4$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \mathop \smallint \limits_{\rho = 0}^4 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ (b) the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le \phi \le \pi $, ${\ \ \ }$ $4 \le \rho \le 5$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \mathop \smallint \limits_{\rho = 4}^5 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ (c) the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $\frac{\pi }{2} \le \phi \le \pi $, ${\ \ \ }$ $0 \le \rho \le 2$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = \pi /2}^\pi \mathop \smallint \limits_{\rho = 0}^2 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $

Work Step by Step

We have a triple integral in spherical coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ (a) In spherical coordinates, we have $0 \le \phi \le \pi $ and $0 \le \theta \le 2\pi $. Since the sphere has radius $4$, so $\rho $ varies from $0$ to $4$, that is, $0 \le \rho \le 4$. So, the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le \phi \le \pi $, ${\ \ \ }$ $0 \le \rho \le 4$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \mathop \smallint \limits_{\rho = 0}^4 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ (b) Since the region is between the spheres of radii $4$ and $5$, $\rho$ varies from $4$ to $5$, that is, $4 \le \rho \le 5$. So, the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le \phi \le \pi $, ${\ \ \ }$ $4 \le \rho \le 5$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \mathop \smallint \limits_{\rho = 4}^5 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ (c) Since the region is a lower hemisphere of the sphere of radius $2$, we have $\rho$ varies from $0$ to $2$, $\phi$ varies from $\frac{\pi }{2}$ to $\pi$. So, the limits of integration: $0 \le \theta \le 2\pi $, ${\ \ \ }$ $\frac{\pi }{2} \le \phi \le \pi $, ${\ \ \ }$ $0 \le \rho \le 2$ Thus, the triple integral: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = \pi /2}^\pi \mathop \smallint \limits_{\rho = 0}^2 f\left( {\rho ,\phi ,\theta } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.