Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 824: 58

Answer

We show that $\nabla {f_A}\left( P \right) = {{\bf{e}}_{AP}}$.

Work Step by Step

We are given a fixed point $A = \left( {a,b} \right)$ in the plane and there is a point $P = \left( {x,y} \right)$. Write the distance from $A$ to $P$: ${f_A}\left( P \right) = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} $ Let ${{\bf{e}}_{AP}}$ be the unit vector pointing from $A$ to $P$. So, ${{\bf{e}}_{AP}} = \frac{{\overrightarrow {AP} }}{{||\overrightarrow {AP} ||}} = \frac{{\left( {x,y} \right) - \left( {a,b} \right)}}{{||\left( {x,y} \right) - \left( {a,b} \right)||}} = \frac{{\left( {x - a,y - b} \right)}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }}$ ${{\bf{e}}_{AP}} = \left( {\frac{{x - a}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }},\frac{{y - b}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }}} \right)$ Next, we evaluate the gradient of ${f_A}\left( P \right)$: $\nabla {f_A}\left( P \right) = \left( {\frac{{\partial {f_A}\left( P \right)}}{{\partial x}},\frac{{\partial {f_A}\left( P \right)}}{{\partial y}}} \right)$ $\nabla {f_A}\left( P \right) = \left( {\frac{{x - a}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }},\frac{{y - b}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }}} \right)$ Thus, $\nabla {f_A}\left( P \right) = {{\bf{e}}_{AP}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.