Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 790: 38

Answer

(a) The pedestrian's average waiting time is $29.805$ seconds. (b) The estimate of the increase in waiting time if $w$ is increased to $27$ ft is $5.79$ seconds. (c) The estimate of the waiting time if the width is increased to $27$ ft and $R$ decreases to $0.18$ is $31.338$ seconds (d) The rate of increase in waiting time per $1$-ft increase in width when $w=30$ ft and $R=0.3$ is $13.351$.

Work Step by Step

(a) We are given $f\left( {w,R} \right) = \left( {w/3.5} \right){{\rm{e}}^{wR/3.5}}$. So, $f\left( {25,0.2} \right) = \left( {25/3.5} \right){{\rm{e}}^{25\cdot0.2/3.5}} \simeq 29.805$ So, the pedestrian's average waiting time is $29.805$ seconds. (b) We are given $f\left( {w,R} \right) = \left( {w/3.5} \right){{\rm{e}}^{wR/3.5}}$. So, the partial derivatives are $\frac{{\partial f}}{{\partial w}} = \frac{1}{{3.5}}{{\rm{e}}^{wR/3.5}} + \frac{{wR}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}$ $\frac{{\partial f}}{{\partial R}} = \frac{{{w^2}}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}$ Using the linear approximation, Eq. (5) the change in $f$ is estimated to be $\Delta f \approx \frac{{\partial f}}{{\partial w}}\Delta w + \frac{{\partial f}}{{\partial R}}\Delta R$ $\Delta f \approx \left( {\frac{1}{{3.5}}{{\rm{e}}^{wR/3.5}} + \frac{{wR}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}} \right)\Delta w + \frac{{{w^2}}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}\Delta R$ Let $R$ be constant. If $w$ is increased to $27$ ft, then $\Delta w = 27 - 25 = 2$, ${\ \ }$ $\Delta R = 0$ At $w=25$ ft and $R=0.2$, $\Delta f \approx \frac{{\partial f}}{{\partial w}}{|_{\left( {25,0.2} \right)}}\Delta w + \frac{{\partial f}}{{\partial R}}{|_{\left( {25,0.2} \right)}}\Delta R$ $\Delta f \simeq \left( {\frac{1}{{3.5}}{{\rm{e}}^{25\cdot0.2/3.5}} + \frac{{25\cdot0.2}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{25\cdot0.2/3.5}}} \right)\cdot2$ $\Delta f \simeq 5.79$ The estimate of the increase in waiting time if $w$ is increased to $27$ ft is $5.79$ seconds. (c) From part (b) we get, at $w=25$ ft and $R=0.2$: $\Delta f \approx \left( {\frac{1}{{3.5}}{{\rm{e}}^{wR/3.5}} + \frac{{wR}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}} \right)\Delta w + \frac{{{w^2}}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}\Delta R$ $\Delta f \approx \left( {\frac{1}{{3.5}}{{\rm{e}}^{25\cdot0.2/3.5}} + \frac{{25\cdot0.2}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{25\cdot0.2/3.5}}} \right)\Delta w + \frac{{{{25}^2}}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{25\cdot0.2/3.5}}\Delta R$ If the width is increased to $27$ ft and $R$ decreases to $0.18$, we have $\Delta w = 27 - 25 = 2$, ${\ \ \ }$ $\Delta R = 0.18 - 0.2 = - 0.02$ So, the change in waiting time is $\Delta f \approx \left( {\frac{1}{{3.5}}{{\rm{e}}^{25\cdot0.2/3.5}} + \frac{{25\cdot0.2}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{25\cdot0.2/3.5}}} \right)\cdot2 + \frac{{{{25}^2}}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{25\cdot0.2/3.5}}\cdot\left( { - 0.02} \right)$ $\Delta f \simeq 1.533$ Thus, the change in waiting time is increased by $1.533$ seconds. Hence, the estimate of the waiting time if the width is increased to $27$ ft and $R$ decreases to $0.18$ is $f\left( {25,0.2} \right) + 1.533 \simeq 29.805 + 1.533 = 31.338$ seconds (d) From part (b) we get the rate of increase in waiting time per $1$-ft increase in width, given by $\frac{{\partial f}}{{\partial w}} = \frac{1}{{3.5}}{{\rm{e}}^{wR/3.5}} + \frac{{wR}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{wR/3.5}}$ When $w=30$ ft and $R=0.3$ vehicle per second: $\frac{{\partial f}}{{\partial w}}{|_{\left( {30,0.3} \right)}} = \frac{1}{{3.5}}{{\rm{e}}^{30\cdot0.3/3.5}} + \frac{{30\cdot0.3}}{{{{\left( {3.5} \right)}^2}}}{{\rm{e}}^{30\cdot0.3/3.5}}$ $\frac{{\partial f}}{{\partial w}}{|_{\left( {30,0.3} \right)}} \simeq 13.351$ Thus, the rate of increase in waiting time per $1$-ft increase in width when $w=30$ ft and $R=0.3$ is $13.351$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.