Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.3 Partial Derivatives - Exercises - Page 783: 83

Answer

We take the derivatives of the function $u\left( {x,t} \right) = sec{h^2}\left( {x - t} \right)$ and show that it satisfies the Korteweg-deVries equation: $4{u_t} + {u_{xxx}} + 12u{u_x} = 0$

Work Step by Step

We have $u\left( {x,t} \right) = sec{h^2}\left( {x - t} \right)$. From Section 7.9 on page 378, we have $\frac{d}{{dv}}sechv = - sechv\tanh v$ $\frac{d}{{dv}}\tanh v = sec{h^2}v$ 1. Find the derivatives with respect to $t$: ${u_t} = \left( {2sech\left( {x - t} \right)} \right)\left( { - sech\left( {x - t} \right)\tanh \left( {x - t} \right)} \right)\left( { - 1} \right)$ $ = 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ 2. Find the derivatives with respect to $x$: ${u_x} = \left( {2sech\left( {x - t} \right)} \right)\left( { - sech\left( {x - t} \right)\tanh \left( {x - t} \right)} \right)$ $ = - 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ = - 2u\tanh \left( {x - t} \right)$ ${u_{xx}} = - 2{u_x}\tanh \left( {x - t} \right) - 2usec{h^2}\left( {x - t} \right)$ $ = - 2{u_x}\tanh \left( {x - t} \right) - 2{u^2}$ ${u_{xxx}} = - 2{u_{xx}}\tanh \left( {x - t} \right) - 2{u_x}sec{h^2}\left( {x - t} \right) - 4u{u_x}$ $ = - 2{u_{xx}}\tanh \left( {x - t} \right) - 2{u_x}u - 4u{u_x}$ $ = - 2{u_{xx}}\tanh \left( {x - t} \right) - 6u{u_x}$ From previous results we have ${u_x} = - 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${u_{xx}} = - 2{u_x}\tanh \left( {x - t} \right) - 2usec{h^2}\left( {x - t} \right)$ $ = 4sec{h^2}\left( {x - t} \right){\tanh ^2}\left( {x - t} \right) - 2sec{h^4}\left( {x - t} \right)$ Substituting these in ${u_{xxx}}$ ${u_{xxx}} = - 2{u_{xx}}\tanh \left( {x - t} \right) - 6u{u_x}$ gives ${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 4sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ + 12sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 16sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ In summary we have: $u\left( {x,t} \right) = sec{h^2}\left( {x - t} \right)$ ${u_t} = 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${u_x} = - 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 16sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ Evaluate $4{u_t} + {u_{xxx}} + 12u{u_x}$ $4{u_t} + {u_{xxx}} + 12u{u_x}$ $ = 8sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${\ \ }$ $ - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 16sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${\ \ }$ $ - 24sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ = 8sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${\ \ }$ $ - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right)$ ${\ \ }$ $ - 8sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ = \left( {8sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)} \right)\left( {1 - {{\tanh }^2}\left( {x - t} \right) - sec{h^2}\left( {x - t} \right)} \right)$ But the hyperbolic functions have the identity: $1 - {\tanh ^2}\left( {x - t} \right) = sec{h^2}\left( {x - t} \right)$ Therefore, $4{u_t} + {u_{xxx}} + 12u{u_x} = 0$. Hence, $u\left( {x,t} \right) = sec{h^2}\left( {x - t} \right)$ satisfies the Korteweg-deVries equation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.