Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.1 Vector-Valued Functions - Exercises - Page 710: 23

Answer

$ r(t)=\langle \pm\frac{\sqrt2}{2}, \pm\frac{\sqrt2}{2}, 0\rangle $, $ r(t)=\langle 0, \pm 1, 0\rangle $

Work Step by Step

Solve for where $ z(t)=0$ for $0 \le t < 2\pi $: $ sintcos2t=0$ $ sint=0$ or $ cos2t=0$ $ t=0, \pi $ or $2t=\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $ t=0, \pi $ or $ t=\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ Plug values of $ t $ into $ r(t)$: $ r(0)=\langle sin(0), cos(0), sin(0)cos(2*0)\rangle $ $ r(0)=\langle 0, 1, 0\rangle $ $ r(\pi)=\langle sin(\pi), cos(\pi), sin(\pi)cos(2*\pi)\rangle $ $ r(\pi)=\langle 0, -1, 0\rangle $ $ r(\frac{\pi}{4})=\langle sin(\frac{\pi}{4}), cos(\frac{\pi}{4}), sin(\frac{\pi}{4})cos(2*\frac{\pi}{4})\rangle $ $ r(\frac{\pi}{4})=\langle \frac{\sqrt2}{2}, \frac{\sqrt2}{2}, 0\rangle $ $ r(\frac{3\pi}{4})=\langle sin(\frac{3\pi}{4}), cos(\frac{3\pi}{4}), sin(\frac{3\pi}{4})cos(2*\frac{3\pi}{4})\rangle $ $ r(\frac{3\pi}{4})=\langle \frac{\sqrt2}{2}, -\frac{\sqrt2}{2}, 0\rangle $ $ r(\frac{5\pi}{4})=\langle sin(\frac{5\pi}{4}), cos(\frac{5\pi}{4}), sin(\frac{5\pi}{4})cos(2*\frac{5\pi}{4})\rangle $ $ r(\frac{5\pi}{4})=\langle -\frac{\sqrt2}{2}, -\frac{\sqrt2}{2}, 0\rangle $ $ r(\frac{7\pi}{4})=\langle sin(\frac{7\pi}{4}), cos(\frac{7\pi}{4}), sin(\frac{7\pi}{4})cos(2*\frac{7\pi}{4})\rangle $ $ r(\frac{7\pi}{4})=\langle -\frac{\sqrt2}{2}, \frac{\sqrt2}{2}, 0\rangle $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.