Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 703: 66

Answer

There are two equations in cylindrical coordinates: ${r_1} = {f_1}\left( {\theta ,z} \right) = \cos \theta + \sin \theta + \sqrt {1 + \sin 2\theta + {z^2}} $ ${r_2} = {f_2}\left( {\theta ,z} \right) = \cos \theta + \sin \theta - \sqrt {1 + \sin 2\theta + {z^2}} $

Work Step by Step

In cylindrical coordinates we have $x = r\cos \theta $, ${\ }$ $y = r\sin \theta $, and ${r^2} = {x^2} + {y^2}$. So, the equation becomes ${r^2} - {z^2} = 2r\left( {\cos \theta + \sin \theta } \right)$ ${r^2} - 2\left( {\cos \theta + \sin \theta } \right)r - {z^2} = 0$ Notice that this is a quadratic equation. The solutions are ${r_{1,2}} = \frac{{2\left( {\cos \theta + \sin \theta } \right) \pm \sqrt {4{{\left( {\cos \theta + \sin \theta } \right)}^2} - 4\cdot1\cdot\left( { - {z^2}} \right)} }}{{2\cdot1}}$ ${r_{1,2}} = \cos \theta + \sin \theta \pm \sqrt {{{\left( {\cos \theta + \sin \theta } \right)}^2} + {z^2}} $ ${r_{1,2}} = \cos \theta + \sin \theta \pm \sqrt {{{\cos }^2}\theta + 2\cos \theta \sin \theta + {{\sin }^2}\theta + {z^2}} $ Since ${\cos ^2}\theta + {\sin ^2}\theta = 1$ and $\sin 2\theta = 2\cos \theta \sin \theta $, so ${r_{1,2}} = \cos \theta + \sin \theta \pm \sqrt {1 + \sin 2\theta + {z^2}} $ It follows that ${r_1} = {f_1}\left( {\theta ,z} \right) = \cos \theta + \sin \theta + \sqrt {1 + \sin 2\theta + {z^2}} $ ${r_2} = {f_2}\left( {\theta ,z} \right) = \cos \theta + \sin \theta - \sqrt {1 + \sin 2\theta + {z^2}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.