Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.1 Vectors in the Plane - Exercises - Page 651: 64

Answer

The magnitude of forces ${{\bf{F}}_1}$ and ${{\bf{F}}_2}$: ${F_1} \simeq 27.32$ ${F_2} \simeq 24.5$

Work Step by Step

From Figure 29, we have the vectors: ${{\bf{F}}_1} = {F_1}{\bf{j}}$, ${{\bf{F}}_2} = {F_2}\cos 45^\circ {\bf{i}} - {F_2}\sin 45^\circ {\bf{j}}$, where ${F_1} = ||{{\bf{F}}_1}||$ and ${F_2} = ||{{\bf{F}}_2}||$. Let ${{\bf{F}}_3}$ denote the vector on the right. So, ${{\bf{F}}_3} = - 20\cos 30^\circ {\bf{i}} - 20\sin 30^\circ {\bf{j}}$ Since there is no net force on the object, ${{\bf{F}}_1} + {{\bf{F}}_2} + {{\bf{F}}_3} = {\bf{0}}$. So, the components of the total net forces are (1) ${\ \ }$ ${F_2}\cos 45^\circ - 20\cos 30^\circ = 0$ (2) ${\ \ }$ ${F_1} - {F_2}\sin 45^\circ - 20\sin 30^\circ = 0$ From equation (1) we get ${F_2} = 20\frac{{\cos 30^\circ }}{{\cos 45^\circ }} = 10\sqrt 6 \simeq 24.5$ Substituting ${F_2} = 10\sqrt 6 $ in equation (2) gives ${F_1} - 10\sqrt 6 \sin 45^\circ - 20\sin 30^\circ = 0$ So, ${F_1} = 10 + 10\sqrt 3 \simeq 27.32$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.