Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.2 Arc Length and Speed - Exercises - Page 610: 7

Answer

$$3\pi$$

Work Step by Step

\begin{align*} s&=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t\\ &=\int_{0}^{\pi} \sqrt{9 \cos ^{2} 3 t+9 \sin ^{2} 3 t} dt \\ &=\int_{0}^{\pi} \sqrt{9\left(\cos ^{2} 3 t+\sin ^{2} 3 t\right)} d t\\ &=\int_{0}^{\pi} 3 \sqrt{\left(\cos ^{2} 3 t+\sin ^{2} 3 t\right)} d t\\ &=3t\bigg|_{0}^{\pi}\\ &=3\pi \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.