Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.6 Power Series - Preliminary Questions - Page 577: 4

Answer

The radius of convergence is $1$.

Work Step by Step

Given $$F(x)=\sum_{n=1}^{\infty} n x^{n}$$ Since $$F'(x)=\sum_{n=1}^{\infty} n^2 x^{n-1} $$ Since $a_n = n^2 x^{n-1}$ and $a_{n+1} = (n+1)^2 x^{n}$, then \begin{align*} \rho&=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\\ &=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^2 x^{n}}{n^2 x^{n-1}} \right|\\ & =\left|x\right| \lim _{n \rightarrow \infty}\frac{(n+1)^2 }{n^2 }\\ &= \left| x \right| \end{align*} Then $F'(x)$ converges for $$ \left|x\right|\lt 1 \ \ $$ And the radius of convergence is $1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.