Answer
Converges
Work Step by Step
Given $$ \sum_{n=1}^{\infty} \sin\frac{1}{n^2}$$
Since for $n\geq1$
$$\sin\frac{1}{n^2}\leq \frac{1}{n^2} $$
Compare with the convergent series $ \sum_{n=1}^{\infty} \frac{1}{n^2}$ ($p-$series, $p>1$), then:
$$ \sum_{n=1}^{\infty} \sin\frac{1}{n^2}$$
also converges.