Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 523: 90

Answer

$P = 131528.68$

Work Step by Step

$$\eqalign{ & c\left( t \right) = 30000 + 500t,{\text{ }}r = 7\% ,{\text{ }}{t_1} = 5 \cr & {\text{The present value }}P{\text{ is given by }} \cr & P = \int_0^{{t_1}} {c\left( t \right)} {e^{ - rt}}dt \cr & {\text{Substituting}} \cr & P = \int_0^5 {\left( {30000 + 500t} \right)} {e^{ - 0.07t}}dt \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = 30000 + 500t,{\text{ }}du = 500dt \cr & dv = {e^{ - 0.07t}},{\text{ }}v = - \frac{{100}}{7}{e^{ - 0.07t}} \cr & {\text{By the integration by parts formula}} \cr & P = \left[ { - \frac{{100}}{7}\left( {30000 + 500t} \right){e^{ - 0.07t}}} \right]_0^5 - \int_0^5 {\left( { - \frac{{100}}{7}{e^{ - 0.07t}}} \right)\left( {500} \right)dt} \cr & P = - \frac{{100}}{7}\left[ {\left( {30000 + 500t} \right){e^{ - 0.07t}}} \right]_0^5 + \frac{{2500000}}{7}\left[ {{e^{ - 0.07t}}} \right]_0^5 \cr & {\text{Evaluating the limits we obtain}} \cr & P = 101394.8155 + 105468.53 \cr & P = 131528.68 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.