Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 453: 23

Answer

$V = \pi \ln 5$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{{\sqrt {x + 1} }},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 4 \cr & {\text{Let }}R\left( x \right) = f\left( x \right) \cr & {\text{Apply the disk method}} \cr & V = \pi \int_a^b {{{\left[ {R\left( x \right)} \right]}^2}} dx \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_0^4 {{{\left[ {\frac{1}{{\sqrt {x + 1} }}} \right]}^2}} dx \cr & V = \pi \int_0^4 {\frac{1}{{x + 1}}} dx \cr & {\text{Integrate}} \cr & V = \pi \left[ {\ln \left| {x + 1} \right|} \right]_0^4 \cr & V = \pi \left[ {\ln \left| {4 + 1} \right| - \ln \left| {0 + 1} \right|} \right] \cr & V = \pi \ln 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.