Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 289: 61

Answer

a. $F(x)=500\sec^{2}x$ b. $\approx 827$ N

Work Step by Step

a. F and $\sec^{2}x$ are proportional: $F(x)=k\sec^{2}x$ $(\sec 0=1)$ $F(0)=k\cdot 1=500\quad\Rightarrow\quad k=500$ $F(x)=500\sec^{2}x$ b. Average value $=\displaystyle \frac{1}{b-a}\int_{a}^{b}F(x)dx$ $\displaystyle \frac{1}{\pi/3-0}\int_{0}^{\pi/3}500\sec^{2}xdx$ $=\displaystyle \frac{1500}{\pi}[\tan x]_{0}^{\pi/3}$ $=\displaystyle \frac{1500}{\pi}(\sqrt{3}-0)$ $\approx 827$ N
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.