Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.1 Exercises - Page 168: 43

Answer

Absolute minima of $0.75$ at $x=\displaystyle \frac{1\pm\sqrt{3}}{2}$ Absolute maximum of $31$ at $x=3$

Work Step by Step

Graph $f(x)$ and $f'(x)$. See image below, work done on desmos.com. The derivative is zero for $x\approx-0.366$ $x=0.5$ $x\approx 1.366$, and we calculate $f(x)$ at the endpoints and critical points (also on the image) $f'(x)=4x^{3}-6x^{2}+1$, and a rational zero is $x=\displaystyle \frac{1}{2}$, so, a factor of $f'$ is $(x-\displaystyle \frac{1}{2}).$ With synthetic division, $\left[\begin{array}{rrrrrrr} 1/2 & | & 4 & -6 & 0 & 1\\ & & & 2 & -2 & -1\\ \hline & & 4 & -4 & -2 & 0 \end{array}\right]$ $f'(x)=(x-\displaystyle \frac{1}{2})(4x^{2}-4x-2)=(x-\frac{1}{2})\cdot 2(2x^{2}-2x-1)$ $=(2x-1)(2x^{2}-2x-1)$ $x=\displaystyle \frac{2\pm\sqrt{4+8}}{2(2)}=\frac{2(1\pm\sqrt{3})}{2(2)}=\frac{1\pm\sqrt{3}}{2}$ Absolute minima of $0.75$ at $x=\displaystyle \frac{1\pm\sqrt{3}}{2}$ Absolute maximum of $31$ at $x=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.